There are so many different grades of stainless steel to choose from it can be difficult to know which is best for your specifications. But by understanding the properties and characteristics of some of the more common stainless steel alloys, the decision may be easier than you think.
Some of the considerations that should be taken into account when choosing your stainless steel grade include:
Known for its decorative appeal and enhanced corrosion resistance, stainless steel alloys are among the most popular metals in the world. Stainless steel alloys provide beneficial qualities that cannot be matched by any other metal which is why it’s used in a nearly limitless number of domestic and commercial applications throughout the world.
Let Coastal Metals help you find the best option for your specific requirements. Luckily, with a little research and a basic understanding of your project’s needs, the right stainless steel alloy is always available. Call us today and an expert will help you find the right steel for your project.
Stainless steel is a commonly used material in applications ranging from medical instruments or chemical storage to transport or power generation because of its high corrosion resistance, hygiene, and strength. While there are more than 3,500 grades of steel, not all stainless steel grades are created equally.
With so many options, how can you ensure you’re selecting the appropriate grade for your specific needs?
To determine which grade of steel will uphold best in a given environment, think about the conditions your final product will face. Extremely low pH, high stresses and high temperatures, and crevice corrosion negatively impact stainless steel performance. Steels in the austenitic T3XX series, like the common types 316 and 304 alloys, retain their strength, toughness, and corrosion-resistant properties over the broadest temperature range.
Corrosion resistance is the main reason for choosing austenitic stainless grades. Type 316, with its molybdenum addition, even resists chloride ions found in marine and chemical processing applications. With any steel grade, high-quality structural design is the best defense against corrosion.
Next, consider these three top mechanical qualities:
Stainless steel contains 10–30% chromium as its alloying element, which is what helps it resist corrosion. The nickel addition in austenitic grades provides the highest toughness and ductility among stainless grades. Grades high in chromium, molybedenum, and nickel are the most resistant to corrosion.
Alloy content is not the only aspect to consider when choosing a grade of stainless steel; the material’s processing also affects the mechanical response. The duration of time steel is held at different temperatures as part of its cooling process, as well as the total speed at which it is cooled can affect its overall quality.
While the hardness of carbon steels can be increased by heat treatment, austenitic stainless is hardened by cold working operations like rolling, bending, swaging, or drawing at temperatures below the recrystallization temperature. Be aware that increased hardness by cold working operations decreases other properties like elongation and impact resistance.
Austenitic stainless steel is widely available in bar, wire, tube, pipe, sheet, and plate forms; Most products require additional forming or machining before they can be used for their specific application.
Stainless steel tubing, for instance, may need bending or coiling, re-drawing, machining, welding, or end forming. If your stainless steel will see machining processes like CNC machining, drilling, reaming, bevel cutting, chamfering, knurling, or threading, choose a machining rate that mitigates the risk of work hardening or select a “free-machining” grade containing sulfur.
When welding any stainless steel parts, embrittlement in the weld area is a top concern. Choose a lower carbon grade like 304, 304L, or 316L to reduce carbide formation.
Many designers choose stainless steel for its aesthetic appearance, whether that appearance is a shiny, electropolished “bright” finish, a dull “pickled” finish, a matte surface polished to a specific RMS, or a light-absorbing black oxide coating. Austenitic stainless steel grades can take any of these finishes plus the common addition of passivation.
Customers may also need certification for application-specific specifications. For instance, ASTM A213 and A249 should be used for boiler, superheater, and heat-exchanger tubes, while ASTM A908 should be used for hard-drawn austenitic stainless steel industrial needle tubing. There are more than 12,000 ASTM standards, and each addresses a specification so customers know the technical standards tested for chemical composition, heat treatment or temper, and other physical and mechanical attributes.
Although high-performing austenitic stainless steels are the most expensive stainless steels upfront, they are well worth the investment. Choosing a corrosion-resistant material well-suited to its application reduces maintenance, downtime, and replacement costs. Life-cycle costing methods can quantify current and future costs and create an “apples-to-apples“ comparison of different materials.
At Eagle Stainless we can help you prioritize your material requirements and guide you toward choosing the perfect stainless steel grades for your application. With quality management certifications in place since 1998, our commitment to quality is evident at every step of the process and designed to help you make the best steel selection for your industrial application.
If you want to learn more, please visit our website greenhouse benches metal factory, Wire Greenhouse Bench, wholesale Metal Rolling Benches.